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Many investigations of problems dealing with parametric resonance (rith- 
out considering resistance forces) lead to the necessity of finding 
boundedness conditions for the solution of equations of the type 

u” (7) + q (T) u (-c) = 0 (0.1) 

where q(r) is a real periodic function of period T = 2R/o. Assuming 

5 = 2t /a, ‘h z 4 ,, O’L, p (t) = q (2t / w). Y (t) = u (2t / 0) 

equation (0.1) may be reduced to the following form: 

@t 
dl” + ).P (t) Y = 0 (0.2) 

where p(t) is a real periodic function of period n, and h is a certain 
parameter, inversely proportional to the square of frequency of parametric 
disturbance 03 which p(t) is independent. 

The characteristic function AtA) of equation (0.2) is 

‘4 (A) = f {? (x, h) + 4’ (x, A)1 

where r$( t, A) are solutions of equation (0.2) satisfying initial condi- 
tions 

‘p (0, h) = 1, 9’ (0, h) = 0. J, (0, A) = 0. #’ (0, h) = 1 

As is known, the entire real X-axis is decomposed into open intervals, 
so-called zones of stability, in which all solutions of equation (0.2) are 
bounded on the real t-axis, and into a supplementary set of points, which 
generally speaking are isolated points, and also into closed intervals 
(zones of instability). 

Liapunov [ 1.2 1 (see also [ 3 I), investigated the distribution of 
stability zones. on the X-axis. requiring the analysis of relative dis- 
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tribution of the roots of the two equations 

.4 (A)-1 z-0, n (A) + 1 = 0 (0.3) 

Let us designate by x /I the characteristic numbers of the periodic 

boundary value problem 

(1) ?/” (l) + hp (Q ?J (Q = 0, Y (0) = Y (x), ?/’ (0) = Y’ (x) 

and by’X (‘) the characteristic numbers of the “semi-periodic” boundary 

value pr:blem. 

(II) ?/” (1) + hp (t) ?J (1) = 0, !/ (0) =: - tJ (x). ?/’ (0) == - ?J’ (x) 

Obviously, h (1) 

X/J 
is also the root of the first equation in (0.3) and 

is the rogt of the second equation in (0.3). 

The results obtained by Liapunov may be incorporated into the follow- 

ing theorem: 

L iapunov *s Theorem. If 

x 

the characteristic 

may be so numbered 

hold good: 

L=\p(t)dtjO 
c 
0 

numbers of the boundary value problems (I) and (II) 

that the following arrangement of inequalities will 

. . < I._@) < ;._‘*) <a_(‘) < A 
4 3 

(1) < F.-f) < Q) < 2.y < ‘2 1. -_I 

< i..,,(‘) < I.,(?! < i.,“) < i.,(l) < x2(l) < X3(?)< h,(2)< . . 

where 

i._$) : 0, a_$ < 0. if L>U 

i& !I) .~ 0, 
--I, A+,, (0 > 0. if L<O 

If L = 0, the law of alternation of these numbers will remain the same, 

provided the interval (h-o (I), x+,(l)) is considered as being shrunk to 

the point zero, which is also a simple characteristic number of the bound- 

ary value problem (I). 

All intervals having at their ends adjacent characteristic numbers of 

various boundary value problems (I) and (II) are zones of stability. The 

remaining intervals, including their ends, are zones of instability if 

they do not degenerate into a point. In the latter case the points will 

indicate stability, with the exception of the single point x = 0. 

In each unstable zone, with the exception of the interval (A_, (1). 
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h,o(‘)), lies one and only one characteristic number of the boundary 

value problem 

Y” (t) + ‘.P (t) Y (t) = 0, Y (0) = Y (4 = 0 (0.4) 

At present the basic part of this theorem is derived from a graph of 

function v = A(X) (see for instance [ 4 I). as follows: any maximum of the 

curve A(X) is not lower than the line v = 1 and any minimum is not higher 

than the line 7 = - 1 ,or, more precisely, if x = A*, which is a stationary 

point of the function A(A), then 

I -4 (A*) I z 1, A (A*) cl” (I*) < 0 (0.5) 

According to Liapunov’s theorem the parameter x may assume arbitrarily 

large values (which will result in arbitrarily small values of frequency 

0 of parametric excitation), for which equation (0.2) will have unbounded 

solutions. 

Consequently, the investigation of various problems concerning para- 

metric resonance without allowing for resistance forces leads to para- 

doxical results. For instance, investigating the dunamic stability of bars 

by using linear equations without considering damping leads to the con- 

clusion that for any small amplitude of a lingitudinally pulsating force 

there will be a small pulsating frequency at which the dynamic instability 

must take place. This approach to the problem of an attempt to determine 

zones of instability gives only a first approximation for the first zones 

of instability, so that in such a case it is impossible to determine the 

lower (or upper) limits of the values of unstable frequencies of the puls- 

ating longitudinal forces. 

This article defines certain values of the characteristic function and 

the characteristic indices of equation (0.2) for sufficiently large values 

of the parameter A, at which values even a linear formulation of the 

problem indicates a scheme of computations free from the above paradoxes. 

As an example of how a paradox is encountered and how it may be avoided, 

we consider the dynamic stability of a prismatic rod with hinged supports. 

Assuming for the sake of simplicity that function p(t) in equation 

(0.2) is partially continuous. it should be noted that all results obtained 

here will hold good for any periodic function p(t) which can be integrated, 

and may be specifically extended to cases of dynamic stability under 

periodically repeated longitudinal impact. 

1. Investigation of the Increase of Characteristic Function 
A(X). L%me ideas related to the theory of increase of complete functions 

[ 5,6 I will be used subsequently. 

From the work of Liapunov (see [ 7 I and r8 1 p. 277) it follows that 
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A(h) is a complete function, where 

Ihe following proposition will now be proved. 

Theorem 1. ‘Ihe index of convergence of the sequence of zeros of the 
characteristic function A fh 1 is equal to l/2. 

Proof. All zeros of function A(h) are real (see, for instance [ 4 1 ). 
Let the sequence of zeros of function AtA 1 be designated by I a,, 1 (n = 2 1 , 

22, f 3, . ..I. arranged 

, fw; 
I 

Fig. 1. 

in order of increasing values of their modulus; let the positive values 
of a,, be associated with the positive indices and the negative value of 

‘n with the negative indices. 

According to I 4 1 and the Liapunov’s theorem mentioned above, the 
following inequalities hold good: 

j-r,--1 < II,, < i.,, for w -.-- 1, 2, :1, . 

i., -r’ a,, < iv,,, for n-=-l, -2, ---I,... ft.21 

where X,, is the characteristic number of the boundary value problem given 
by (0.4) (Fig. 1). 

Let us first consider a case when p(t 1 >, 0. In this case the asymptotic 
values apply (for instance see [ o 1 p. 3511 

that is, when n-+00 

Ibe symbol o (n2 ) here means that rTb(n*) -+ 0 when n -) 00. 

(1 .:q 
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According to equation (1.2), the following may also be obtained: 

n,, = (.2//i + 0 (9) (11 --‘C) ( 1 . ,5) 

This leads to the conclusion that an infinite series having a general 
term4 a I-( I’* +‘I is convergent, 
In 1 172-d 

but the one having a general terms 
is divergent, which means that the sequence 1 a,, II” has the 

inaex of convergence p = l/2. 

llsing - X instead of X when p(t) < 0, and applying the same reasoning, 
the following asymptotic formula is obtained: 

x 

(,,, :.z (*,‘1//2 I () (II“) (1/-----l,-2,-A, . .) (‘, r= ;: (I . -f-_i) (11 ) -I (1.6) 
0 

The theorem is thus proved for the case of a constant sign function. 

Let it now be assumed that function p(t) changes sign in the interval 
(0, n). Let it have only one change of sign, for instance, p(t) >, 0 when 
(04 t < t,), and p(t) < 0 when ( t0 < t < n). 

If another boundary condition y (t, 1 = 0 is added to the boundary value 
problem expressed by equation (0.4), then, according to the theorem of 
frequency changes when the above additional boundary condition is applied 
(for instance see C 10 I Ch. S), A,,< A,* \< X,+1 when n = 1, 2, 3 . . . , and 
x I‘< h * ,< An when n = -1, -2, -3 . . . , where A,,* is the characteristic 
nk%er onf the boundary value problem (0.4) with boundary condition y(to)=O. 

‘Ihen, according to equation (1.21, An _** < an < An when n = 3, 4, 5 . . . 
and A,,* < nn < An+* when n = -3, -4, -5 . . . However, the positive and 
negative characteristic numbers are respectively the characteristic numbers 
of the following two boundary value problems: 

- ?J” (t) - hp (t) y (t), y (0) = y (to) = 0 

- 9” (q = 1.p (q y (t), Y (&I) = Y (r) = 0 

for which the asymptotic values (1.5) and (1.6) hold good: 

a, = c+W + 0 (9) (n = 1, 2, 3, . . .) 

- arl = c_?n2 -t_ 0 (I?) (n = -1, -2, - 3,. . .) 

where 

(I 2 
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In these equations 

P I(0 = I,19 {! P (t) I + P (O,? p-(t) = l/2 {I p(t) I - F (t)) 

Following similar reasoning, it is also possible to obtain asymptotic 

formulas for the zeros of function A(X) when function p(t) changes sign 

any finite number of times in the interval (0, n). Thus in this case the 

sequence of zeros 1 an )f” of the function A (h 1 also has the index of con- 
vergence p = l/2. 

Theorem 2. The order of increase of function A(X) is equal to l/2. 

Proof. From (1.1) it follows that the order of increase of function 

A(h) is not larger than l/2. On the other hand, since the index of con- 

convergence of the sequence of zeros of the complete function does not 

exceed the order of increase of such a function, then, allowing for 

Theorem 1, the order of increase of function A(h) is not less than l/2. 

‘Ihis proves the theor&. 

It follows from %eorem 2 that A (X ) may be expressed as 

11 (h) = J,j I1 - -J$ 
n=---u, 

(1.8) 

Here the known relation A(O) = 1 was used. 

2. The Asymptotic 
of the Real Part of 
tm, complete functions 

P (1.) : 

Values of the Characteristic Function and 
Characteristic Exponents. Let us consider 

(2. I ) 

where a,(n = 1, 2, 3 . . . ) are positive zeros and bn = - a,(n = -1, -2, 

-3 . ..I are absolute values of the negative zeros of the function A(X). 

According to this, the infinite products (2.1) are convergent and 

1l (1.) = I’ (i*) Q (i.) (2.‘) 

Let the number of zeros of the function P(X 1, in a circle of radius r, 

be designated by Np(r). Also let r > al; then, for a certain N, we have 

uRT -< r < aNtl or c+VV(r) + 0 (N2) < r < c+? [-Y(r) -t_ 11” + o([N + 11”) 

therefore 

(2.3) 
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Also, designating the number of zeros of the function Q(A) in a circle 

of radius r by NQ(r), we may similarly obtain 

(2.4) 

If for the sequence rl, r2, r3 . . . the relation N(r) cr@ holds good, 
N(r) being the number of terms of the sequence in the circle of radius r 
and fi the exponent of convergence of the sequence then such a sequence 
is called regular. Since lim r exist when r + 
m Cfl = l/2), th 

-@N (r) and lin r-fiNq(r) 

en the sequences I a”, 1; and l bn I,- are regular. 

Thus, for the functions Q(X) and P(A) the following expressions for 
the limits will apply (see [ 11 I p. 20): 

lim In Q (reig) 

JQ (7) 
=icfXp+ (-r<a<+ 

P+oD 

Iirn 111 P (rP) i (a -x) 
N&9 

= nespz (0 < 8 < 274 
P+cO 

Utilizing relations (2.3) and (2.4), it is established that 

where the first limit is for (- R < 8 < n) and the second for (0 < 0 < 217). 
Therefore, the index of increase of function A(h) along the ray arg h = 8 

and since the index of increase is the periodic continuous function 8 of 
the period 217; the relation obtained holds good for any 8 if 1 cos l/2 01 
is substituted for cos l/2 8. 

Anclogously, one finds that the index of increase of function P(A) 
along the ray arg X = 8 is 

Since the increase of functions P(A) and Q(h) is 
there exist 

lim r-‘/z In i P (rei”) 1 and lim r-‘,‘~ In 1 Q (re’8) 1 

regular, that is, 

for r-+30 
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then, according to (2.2), for the index of increase hA(0), of the function 
A(h), we obtain 

and consequently, along the positive direction of the real axis, 

‘Ihe value obtained for h, (0) permits the following proposition to be 

stated. 

Theorem 3. For any t > 0 it is possible to find such R(E) > 0, that 

for all A, satisfying the condition X > R(r), the following estimate holds: 

I A 04 I < exp {if lf,_(t>dt + E> 1/r} 
1. 

0 

(2.6) 

by 
In the inequality (2.6) th e value of the integral may not be replaced 
any smaller value, 

From this proposition follows the corollary below. 

Corollary. For any c > 0 it is possible to find R(c ) such that for all 

A > R(c ) the following estimate holds good: 

(2.7) 
0 (I 

where a(h) is the real part of the characteristic exponent. 

% (i.) = r. (i,) -t ii3 (A) 

3. Equation with Damping. Let us consider equation 

y” (t) -, 2:rry’ (tf -k ~~~q(t)~(l) = 0 

where v > 0 is a constant coefficient of damping, CL > 0 

cient, 7(t) >/ 0 is a real function of t having period n 
the segment (0, n). This equation differs from (1.2) by 

of the damping factor p v , which increases with p. .%ch 

be called a “Ampe~P equation. 

(3.1) 

is a real coeffi- 

and continuous in 
the introduction 

an equation may 

‘lhe solutions of (3.1), bounded on the real semi-axis, wil1 be called 

stable. Pounded solutions based on the condition that lim y(t) = fl when 

t + = will Le called asymptotically stable. 
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If V’ >/ max q(t) (0 < t 4 n), then it follows from C 12 1 that the so- 

lutions of (3.1) are stable for any value of CL; and when min q(t) > 0 

(0 < t 4 n), the solutions are asymptotically stable. If v2 < max q(t) 

(0 < t < n 1, the solutions may be unstable (for certain values of para- 

meter X ), However, for such a case the following theorem may be formulated. 

Theorem 4. If the function q(t) > 0 is not identically equal to zero 

in the interval (0, n), then for any v > 0 there will be R(V) > 0 such 

that for p > R(v) all solutions of (3.1) are asymptotically stable. 

Proof. By substitution y(t) = u(t) exp(-pvt ) the equation may be re- 

duced to the following form: 

U” (t) -; :“? [q (1) - v?] u (1) = 0 (3.2) 

obviously, the only case which need be considered is when p2 is inside 

the unstable zone of (3.2), i.e., when A2 (p2) > 1. In such a case any 

solution of (3.1) may be given in the following form: 

y (t) -I e-i*‘Jl [c,e~(:l*) f /I (1) -j- cpe --x (:*?I ‘fi (L)] 

where c1 and c2 are constants determined by the initial conditions, f,(t) 
and f2 (t ) are certain periodic functions and a (p2 ) is a real part of the 
characteristic exponent which lies in the right half-plane. lhus the 

theorem will be proved if it can be shown that for sufficiently large 

values of p the inequality a(~~) < p v holds good. 

It follows from the corollary of Theorem 3 that for any t > 0 there is 

R(c) > 0 such that for all /A > R(E ) there will be 

Y. (11’) < (+ \ v<p-(l) tit -+ ;1, [/., 
p_ (1) _ I \+ .- Q (0 for v2 ;. q (1) 

0 to for y2 < q (1) (3J) 

In conformity with condition q(t) > 0, 

‘1’ ,,i IllilS /‘_ (0 (‘r :1,&T;) (3.4) 

where the equal sign holds good only for those values of t for which 

q(t) = 0. 

On the other hand 

(3.5) 

where the equal sign holds good only when p_( t 1 = const (consequently, 

q(t) I const) in the interval (0, n ). 

Comparing (3.4) and (3.5), we may conclude that if q( t ) + 0 in the 



354 K.P. Kovalenko 

interval (0, R 1, then 

This difference will be designated by 6 (~1. According to (3.3) there 

will exist Rk (~1) = R(u) such that 

‘Ihis proves the theorem*. 

CoroZ Zary. JZquation (3.1) either has no zones of instability (as for 

instance when V* > max q(t) (0 < t < RI, or it has only a finite number 

of unstable zones. 

4. c)n a Possible Paradox in the Problems of Dynamic Stabil- 
ity.Let us consider the usual problem of dynamic stability of a pin- 

supported prismatic rod under the action of longitudinal periodic forces 

p(t) (Fig. 21, first investigated by Ekliaev 1 14 1 . This problem leads to 

the investigation of the stability of solutions of the differential equa- 

tion 

(4.1) 

with boundary conditions 

y (0, t) = y (I, q = 0, a2Y O-4 t) a2Y (I, 0 
-=aza= ax2 

0 

Here EI is the stiffness, y is the specific weight, F is the cross- 
sectional area, g is the acceleration of gravity. Following Beliaev, let 

us consider a special form of the function P(t) = PO cos ot. We find the 

Fig. 2. 

solution in the form of a series 

y (5, t) = T, (t) ‘pl(4 + Tz (0 ?a (4 + - - - 

. It should be noted that when q(t) Is not reduced to zero and has a 
bounded derivatiw. the asymptotic stability at large values of p 
follows from the work Leonov [13 1. In this case 
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where I qb,(x 11 is the normalized system of the fundamental functions 

characterizing the problem of natural vibrations of the same rod; these 

vibrations coincide with the fundamental functions dealing with the 

problem of static stability; then, considering the independent variable 

r = l/2 o t, we find the following equations for the Fourier coefficients 

Tn(r 1: 

T,,” (T) + T (1 - .!I,, cos ?T)T, (T) = 0, 

21, = PO/ Pn, P,, = E/nW-2 (n = 1, 2, 3, . . .) (4.2) 

where kn is the natural frequency of vibrations and P,, is Bier’s critical 

forces of the given rod. 

Equation (4.2) is of the form of (0.21, in which X = 4 kn2 o-* and 

p(t) = 1 - bn cos 2 t. According to Liapunov’s theorem, even Fen P,, < P,, 
there is an infinite number of unstable zones, which develop with the 

infinitely increasing values of parameter A. Next, considering parameter 

o, we come to the following conclusion: 

There exist an infinite number of series (for n = 1, 2, 3 . . .I for un- 

stable zones for the frequency of the periodic longitudinal force equal 

to o; also in each series there is an infinite number of zones of in- 

stability which concentrate to the point o- 0. 

‘lhe determination of the boundaries of such zones of instability for 

various equations (when II = 1, 2, 3 . . .) leads to the diagram shown on 

Fig. 3, where 

Fig. 3. 

the zones of unstable frequencies for the first three equations (4.2) are 
indicated. This distribution of unstable zones leads to the paradoxical 

conclusions mentioned above. 

Such a paradox is the result of extreme idealization in 

of dynanic stability problems. 
the fornmlation 

However, even in the frame work of the linear treatment of the problem, 
the paradox may be removed by allowing for damping forces. It may be 
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assumed (for instance see [ 15 I ), that there are external resistant forces 

proportional to the speed of rod particles, and internal resistant forces 

proportional to the speed of deformation. With these assumptions equations 

(4.2) take on the following form: 

TV,” (T) -I- 2 f?? -’ Al- 
(E Y) 

T,’ (T) + $f (1 - b,, cos 2:) T, (5) = 0 (4.3) 

(n = 1, 2. 3, . . . 

where e is the coefficient of internal friction, and q is the coefficient 

of external friction; the meaning of other symbols remains the same. This 

leads to equations (3.1) with damping, where 

2k,, 
!l II== y, VI,= _q+), q,,(t) = 1 - o,, cos 2t 

If only external resistance exists (i.e. when E = O), for each equa- 
tion of type (3.1) of th e infinite system (4.3) there will be a series of 

a finite number of unstable zones, as follows from Theorem 4. However, 

since there is an infinite number of such series and a rapid reduction of 

damping coefficient un with the increase of the index II, allowing for the 

external resistance alone does not resolve the said paradox*. 

If IQ > max q,(t) = 1+ b,, which takes pl.ace when 

then, according to Theorem 4, the unstable zones wi.11 be absent, i.e. with 

the inclusion of linear internal damping there will be only a finite 

number of series of instability and only a finite number of unstable zones 

in each series. Thus when q(t) >/ 0, and the frequency of the longitudinal 

force is low enough, the rod is always stable. Since exact estimates have 

been considered here, it may be said that if q,( t ) changes sign, then in- 

stability will occur for sufficiently low frequencies. The function 

q,(t) = 1- P(t)/Pn may change sign only when there are values of P(t) 

larger than the critical force; thus if max P(t) > P,, then with suffi- 

ciently slow changes in the magnitude of applied force, instability of 

the rod occurs; this accords with experimental results. 

l Beilin and Dzhanelidze, in their review of works on the dynamic stabil- 

ity of rigid systems, doubt whether the paradox can be resolved by 

considering only external 1 inear resistance. They do not allow for the 

fact that there is an infinite number of series having unstable zones 

when only external resistance is present. 
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